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Abstract

We present a technique for computing approximately optimal
solutions to stochastic resource allocation problems modeled
as Markov decision processes (MDPs). We exploit two key
properties to avoid explicitly enumerating the very large state
and action spaces associated with these problems. First, the
problems are composed of multiple tasks whose utilities are
independent. Second, the actions taken with respect to (or
resources allocated to) a task do not influence the status of any
other task. We can therefore view each task as an MDP. How-
ever, these MDPs are weakly coupled by resource constraints:
actions selected for one MDP restrict the actions available to
others. We describe heuristic techniques for dealing with sev-
eral classes of constraints that use the solutions for individual
MDPs to construct an approximate global solution. We demon-
strate this technique on problems involving thousandsof tasks,
approximating the solution to problems that are far beyond the
reach of standard methods.

1 Introduction
Markov decision processes [12, 16] have proven tremen-
dously useful as models of stochastic planning and decision
problems. However, the computational difficulty of applying
classic dynamic programming algorithms to realistic prob-
lems has spurred much research into techniques to deal with
large state and action spaces. These include function approx-
imation [4], reachability considerations [8] and aggregation
techniques [11, 6, 7].

One general method for tackling large MDPs is decomposi-
tion [10, 15, 17, 5]. An MDP is either specified in terms of a set
of “pseudo-independent” subprocesses [17] or automatically
decomposed into such subprocesses [5]. These subMDPs are
then solved and the solutions to these subMDPs are merged,
or used to construct an approximate global solution. These
techniques can be divided into two broad classes: those in
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which the state space of the MDP is divided into regions to
form subMDPs, so that the MDP is the union (in a loose sense)
of the subMDPs [10, 15]; and those in which the subMDPs are
treated as concurrent processes, with their (loosely) cross-
product forming the global MDP. In this paper, we focus on
the latter form of decomposition: it offers great promise by
allowing one to solve subMDPs that are exponentially smaller
than the global MDP. If these solutions can be pieced together
effectively, or used to guide the search for a global solution
directly, dramatic improvements in the overall solution time
can be obtained.

The problems we address here are sequential stochastic
resource allocation problems. A number of different tasks, or
objectives, must be addressed and actions consist of assigning
various resources at different times to each of these tasks. We
assume that each of these tasks is additive utility independent
[13]: the utility of achieving any collection of tasks is the
sum of rewards associated with each task. In addition, we
assume that state space of the MDP is formed from a number
of features that, apart from resources, are relevant only to a
specific task. Furthermore, an assignment of resources to one
task has no bearing on the features relevant to any other task.
This means that each task can be viewed as an independent
subprocess whose rewards and transitions are independent
of the others, given a fixed action or policy (assignment of
resources). 1

Even this degree of independence, however, does not gen-
erally make it easy to find an optimal policy. Resources are
usually constrained, so the allocation of resources to one task
at a given point in time restricts the actions available for others
at every point in time. Thus, a complex optimizationproblem
remains. If there are no resource constraints, the processes
are completely independent. They can be solved individu-
ally, and an optimal global solutiondetermined by concurrent
execution of the optimal local policies; solution time is deter-
mined by the size of the subMDPs. With resource constraints,
local optimal solutions can be computed, but merging them
is now non-trivial. The question of how best to exploit lo-
cal solutions to determine a global policy is the subject of

1This model can be applied more generally to processes where
the action can be broken into several components, each affecting
a different process independently; resource allocation is a specific
example of this.



this paper. We note that in resource allocation problems, the
action space is extremely large (every possible assignment
of resources to tasks), making other standard approximation
methods such as neurodynamic programming [4] unsuitable.

Singh and Cohn [17] treat a version of this problem,
in which there are constraints on the feasible joint action
choices. As they observe, the value functions produced in
solving the subMDPs can be used to obtain upper and lower
bounds on the global value function. These bounds are used
to improve the convergence of value iteration (via a form of
action elimination [16]) for the global MDP. Unfortunately,
their algorithm requires explicit state-space and action-space
enumeration, rendering it impractical for all but moderate-
sized MDPs.

We take a different approach in this paper: we are willing to
sacrifice optimality (assured in Singh and Cohn’s algorithm)
for computational feasibility. To do this, we develop a several
greedy techniques to deal with variants of this problem (in
which the types of resource constraints differ). A hallmark
of these heuristic algorithms is their division into two phases.
An off-line phase computes the optimal solutions and value
functions for the subMDPs associated with individual tasks.
In an on-linephase, these value functions are used to compute
a gradient for a heuristic search to assign resources to each
task based on the current state. Once an action is taken, these
resource assignments are reconsidered in light of the new
state entered by the system.

This problem formulation was motivated by a military air
campaign planning problem in which the tasks correspond to
targets, and in which there are global constraints on the total
number of weapons available as well as instantaneous con-
straints (induced by the number of available aircraft) on the
number of weapons that may be deployed on any single time
step. Actions have inherently stochastic outcomes and the
problem is fully observable. This type of problem structure
is fairly general, though, and can also be seen in domains
such as stochastic job shop scheduling, allocation of repair
crews to different jobs, disaster relief scheduling, and a wide
variety of bandit-type problems [3].

We are able to solve problems of this type involving hun-
dreds of tasks (with a state space exponential in this number)
and thousands of resources (with an action space factorial
in this number). Such problems are far beyond the reach
of classic dynamic programming techniques and typical ap-
proximation methods such as neurodynamic programming.

In Section 2 we discuss some relevant background on MDPs
and define our specific problem class formally. In Section 3,
we describe Markov task decomposition (MTD) as a means
of breaking down large, loosely coupled decision processes
and describe, in very general terms, how solutions for the
subMDPs might be used to construct a global solution in the
presence of various types of action constraints. In Section 4,
we describe the air campaign planning problem in some de-
tail, and show how particular characteristics of this problem
make it especially well-suited to both MTD and our heuristic
policy construction methods. Section 5 demonstrates the re-
sults of MTD applied to very large instances of this problem.
We conclude in Section 6 with some remarks on the reasons

for MTD’s success and future work.

2 Markov Task Sets
A (finite) Markov decision process is a tuple
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probabilities and rewards maybe non-stationary, depending
also on the time at which the action is performed or the
transition is made.

Given an MDP, the objective is to construct a policy that
maximizes expected accumulated reward over some horizon
of interest. We focus on finite horizon decision problems.
Let 5 be our horizon: the aim is construct a non-stationary
policy 6�7 � 6 0 �! 8 ! �� 6�9/: 1 � , where 6<; :
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is maximum. Standard dynamic-programming methods [2,

16] can be used to compute a sequence of optimal U -stage-to-
go value functions up to the horizon of interest, from which
an optimal policy can be derived.

We consider a special form of MDP suitable for modeling
the stochastic resource allocation problems described in the
introduction. A Markov task set (MTS) of V tasks is defined
by a tuple
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is a set of integers from 0 to some limit, describing the
allocation of an amount of resource to task f ;2b Z is a vector of reward functions
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conditional on the starting state, resulting state and action
at each time;3b [ is a vector of state transition distributions,
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0
�
1� , specifying the probability

of a task entering a state given the previous state of the task
and the action;b \ is the cost for using a single unit of the resource;b ]+j is the instantaneous (local) resource constraint on the
amount of resource that may be used on a single step;b ]+_ is the global resource constraint on the amount of the
resource that may be used in total.

We again assume a finite horizon 5 .4 An MTS induces
an MDP in the obvious way: the state space consists of the

2It may be possible to extend this work to apply to real-valued
amounts of resources and to multiple resource types.

3If reward values are stationary the time index may be omitted.
4Our techniques may be extended to other optimality criteria,

such as infinite-horizon discounted or average reward.



cross product of the individual state spaces and the available
resources; the action space is the set of resource assignments,
with an assignment being feasible at a state only if its sum
exceeds neither

] j
nor the total resources available at that

state; rewards are determined by summing the original com-
ponent rewards and action costs; and transition probabilities
are given by multiplying the (independent) individual task
probabilities (with the change in resources being determined
by the action).

Instead of formulating this “flat” MDP explicitly, we retain
the factored form as much as possible. The goal, then, is to
find an optimal non-stationary policy 6 � 7 � 6 0 �!c8c8cR� 6�9/: 1 � ,
where 6�;/7 � 6�;1 �! 8 8 �� 6�;d � and each 6<;e :
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For simplicity, we have described MTSs involving only a
single resource type. In general, there may be multiple re-
sources, each of which has a cost and may be subject to local
and global constraints. In Section 4 we present a problem
with two resources with interrelated constraints. Note that
MTSs allow one to model both reusable resources, such as ma-
chines on a shop floor (with local but no global constraints,)
and consumable resources, such as raw materials (that have
global and possibly induced local constraints).

Finding an optimal policy is a very hard problem even for
small MTSs, because the equivalent MDP is very large. It is, for
all practical purposes, impossible to solve exactly unless the
number of tasks, the individual state spaces and the available
resources are very small. The major source of difficulty is
that the decision to apply a resource to a given task influences
the availability of that resource (either now or in the future)
for other tasks. Thus, the tasks, while exhibiting tremendous
independence, still have strongly interacting solutions. A
“local policy” for each task must take into account the state of
each of the other tasks, precluding any state-space reduction
in general5. We now turn our attention to approximation
strategies that limit the scope of these interactions.

3 Markov Task Decomposition
Our approximation strategy for MTSs is called Markov task
decomposition (MTD).

The MTD method is divided into two phases. In the first, off-
line phase, value functions are calculated for the individual
tasks using dynamic programming. In the second, on-line
phase, these value functions are used to calculate the next
action as a function of the current state of all processes.

5If there are no resource constraint, the sub-processes can be
solved individually and the local policies can be defined as mappingsQ
M�

: � �������
.

3.1 Global Constraints Only
We will first consider the case in which there is only a global
resource constraint, but no limit on the total number of re-
sources applied on a single step.

In the off-line phase, we compute the component value
functions  e �,� e �"!��$#�" where

� e
is the current state of task f ,

0 % ! % 5 is the time step, and
#

is the number of resources
remaining:? � C,D � P"� P�& EGF max')(+* L,.- /1032 / �

�
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�
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	�� 4 (1)

where  e��,� e�� 5 �=# " 7 0. This is the expected cumulative
reward of the optimal policy for task f starting in state

� e
at time

!
using at most

#
resources. In other words, if we

ignored all other tasks and had
#

resources to allocate to taskf , we would expect this value. It is useful to note that, even
at the last stage, it may be suboptimal to spend all (or even
any) of the remaining resources.

It is relatively simple to compute  e using dynamic pro-
gramming as long as we have some way of tightly bounding
the values of

#
and

!
that must be considered. In Section 4,

we describe a domain for which tight bounds on these quan-
tities are available.

With these  e in hand, we proceed to the on-line phase.
We are faced with a particular situation, described by the
current state

� 7 � �
1
�8c8c!c�����d �

, remaining global resources# _
, and time-step

!
. We must calculate

� 7 �,�
1
�8c!c8c���� d �

,
the action to be taken (i.e., the resources to be spent) at the
current time step (where

� e
is applied to task f ). Since we

are ignoring instantaneous constraints, we require only that> e � e % # _
. However, allocating all resources at the current

time step will generally not be optimal. Optimal allocation
would be required to take into account future contingencies,
their probabilities and the value of holding back resources
for these future contingencies.

Rather than solve this complex optimization problem, we
rely on the fact that the local value functions  e give us some
idea of the value of assigning

#�e % # _
resources to taskf at time

!
. Furthermore,  e implicitly determines a policy

for task f , telling us how many of the resources
� e % # e

should be used at the current step
!
. Thus, MTD works in the

following loop, executed once per decision stage:

(a) Using the functions  e��,� eR�8!��! #" , heuristically assign re-
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to task f such that

> e@?1d # e % #�_
.

(b) Use  e and
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to determine
� e

, the action to be taken
currently w.r.t. task f ; that is4 � F arg max')(+* / L,.- / 032 / �
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, observe resulting
state
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, and compute remaining re-
sources

#CB_ 7 # _ED > e@?1d � e
.

The one component of MTD that has been left open is
the heuristic allocation of resources to tasks. Doing this



well will generally require specific domain knowledge. We
describe a greedy approach in Section 4 below that works
extremely well in the air campaign planning domain, though
the fundamental characteristics of this problem hold true of
a wide class of problem domains.

This approach is plausible, but even if the
# e

are chosen
optimally with respect to the criteria described above, the
policy produced will generally be suboptimal for the follow-
ing reasons.6 We estimate the utility of an allocation

#�e
to

task f using  e , which is exactly the utility of solving task f
with

#%e
resources; clearly,

ˆ

? C,D P"��P"& EGF �L � N 1

? � C,D � P"� P�& � E
is a lower bound on  � ; it is the value we wouldachieve if we
made the allocations at step

!
and never re-evaluated them.

In particular, given
#%e

resources for task f , MTD allocates� e
resources to the task at the current stage based only on e . The optimal Bellman equations indicate that an optimal

allocation
� e

must not only take into account the future course
of task f , but also reason about future contingencies regarding
other tasks, and assess the value of reallocating some of these
resources to other tasks in the future.

3.2 Adding Instantaneous Constraints
It is quite difficult to incorporate local constraints in a sat-
isfying way. An obvious strategy is to simply enforce the
constraint that

> de � 1

� e % ] j
to the on-line phase of MTD.

This will result in the generation of admissible policies, but
they may be of poor quality— ˆ is likely to be a serious over-
estimate of the value function. This is because the allocations# e

determined by the  e in step (a) above may be based on
the assumption that more than

] j
resources can be used in

parallel.
Despite the potential drawbacks, we pursue a strategy of

this type in the application described in Section 4. This type
of strategy has the appeal of computational simplicity and
leads to reasonably good results in our domain. However,
more complex strategies for dealing with instantaneous con-
straints can easily be accommodated within the MTD frame-
work. Such strategies will be the subject of future study.

4 Example: Air Campaign Planning
In the simplified air campaign planning problem, tasks cor-
respond to targets and there are two resource types: weapons
and planes. The status of a target is either damaged or undam-
aged:

� e 7 ������� � . Each target has a window of availability� !��e �8!��e � , whose length is denoted
. e 7 !��e D !��e	�

1, and a re-
ward 
 e ; if it is damaged during the window, then the reward
 e is received:O � C,D � P54 � P D)6� P � EGF �
� �

if � ,� � � � ���� and D
�
F�� and D 6� F��

0 otherwise

With probability � e , a single weapon will damage target f ; a
“noisy-or” model is assumed for multiple weapons, in which

6Note that the policy produced by MTD is constructed incremen-
tally; indeed, it isn’t a policy per se since it only plans for states that
are actually reached.

a single “hit” is sufficient to damage the target and individual
weapons’ hit probabilities are independent. That is,
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�
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1 if D
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F�� and D 6� F��� ' /� if D
�
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1 � � ' /� if D
�
F�� and D 6� F��

where � e 7 1
D � e is the probability of a weapon missing

the target. There is a cost,
\
, per weapon used.7 Each plane

has a capacity ��� (which we take to be fixed for simplicity)
and can carry only up to ��� weapons. A plane loaded
with

�
weapons and assigned to a target will deliver all

�
weapons. We will consider a variety of different constraints.
In Section 4.3 we treat the case in which the only constraint
is a global constraint on the total number of weapons,

]�_
.

In Section 4.4 we treat the case in which the only constraint
is a local constraint on the number of planes,

]�j
, that can

be used at a single stage. Since each plane can only carry a
limited number of weapons, any constraint on planes induces
a constraint on weapons. This is a more sophisticated type
of local constraint than previously. Now, each action must
satisfy: dL e � 1  

� e"! �#�%$ % ]+j
Finally, we combine global weapon constraints with local
plane constraints in Section 4.5.

4.1 Calculating Component Value Functions
The following discussion is somewhat brief and informal; a
formal discussion with detailed derivations will be provided
in a forthcoming technical report.

Within this problem, the component value functions can be
considerably simplified. First, since every state in which the
target has been damaged has value 0, we need only compute
value functions for the state in which the target is undamaged.
Second, since there is only a restricted window of opportunity
for each target f , we need only compute the value function for
a horizon equal to the number of time steps

. e
in the target’s

window of opportunity. Since window lengths are typically
much shorter than the horizon for the entire problem, this
considerably simplifies the dynamic programming problem:
we need only compute  e��&�G�$#)�8!�" for

!��e % ! % !��e
, and then

we apply: ? � C�� P"&%P�� EGF � ? � C�� P"&�P"� ,� E if ��� � ,�
0 if �(' ����

Another factor that strongly influences the “shape” of the
local value functions (and ultimately, our heuristic algorithm)
is the noisy-or transition model. Because of this, the prob-
ability of damaging the target of any policy that uses

#
weapons in no more than ) steps, depends only on

#
(not on

when the weapons are used) and is equal to 1
D �%*e . Policies

may differ in expected utility, however, depending on how
they choose to allocate weapons over time, which affects the
expected number of weapons used. If

. e,+ #
then it is never

optimal to send more than one weapon at a time. Otherwise,

7We ignore the cost per plane in the present paper.
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Figure 1: An instance of optimal policy for single-target
problem: number of weapon sent if the target is still undam-
aged at time
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, as a function of
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the optimal policy sends an increasing number of weapons at
each step, in the case that the weapons on the previous step
failed to damage the target.

Figure 1 shows an example of such a single target policy
with a given window, reward and hit probability (it is optimal
for any allocation of weapons greater than the cumulative
total shown).

Furthermore, we can show that  e ��� �=# �"!�" increases
monotonically with

#
until a point

# �e � ; , at which point it
remains constant:

# �e � ; is the point at which marginal utility
of resource allocation becomes zero, and where the marginal
utility of resource use is negative (the cost of a weapon ex-
ceeds the value of the small increase in success probability,
so even if it is allocated, it will not be used). This implies
that we need only compute  e �&�G�$#)�8!�" for

# % # �e � ; , again
significantly reducing the effort needed to compute  e .

For each target f , each
!A$�� ! �e �8!��e � , and each

# % # �e � ; , we
will compute  e��&�G�$#)�8!�" and store these results in a table to
be used in the on-line phase of MTD. We can do this using
the dynamic programming equation? � C�� P"&%P�� E F

max
0 (+')( * � C 1 � � '� E � � �A	�� 4 : � '� ? � C�� P"& � 4 P�� : 1 E�� P

where  e���� �=# �"!��e � 1
" 7  e���� � 0 �"!�" 7 0. The value of

spending � B weapons can be described using three terms: the
first is the expected reward due to damaging the target on the
current time step, the second is the cost of using

�
weapons,

and the third is the future value of trying to damage the target
with

# D �
weapons left.

4.2 No Resource Constraints
If there are no resource constraints, the on-line phase of MTD
is not required. The tasks are completely decoupled and
the optimal policy 6�; is described by the component value
functions (recall that 6<;e � � " 7 0; no action is required for a

damaged target):Q
M�
C�� E�F arg max' / C 1 � � ' /� E � � � 	�� 4 � : � ' /� ? � C�� P"& �

�
�
MTS

1 P"� : 1 E (2)

(for any
!

within f ’s window). This requires a simple search
over values of

� e
, bounded by

� e % # �e � ; .
4.3 Weapon (Global) Constraints Only
With constraints on the number of weapons available, the on-
line phase is crucial. We have the component value functions e at our disposal, and are given the current state

�
of all

targets, the number of weapons remaining
# _

, and the time!
. Our goal is to choose

# e
—the weapons to assign to each

target f with state
� e 7 �

and such that
! % !	�e

—according
to step (a) of the on-line algorithm in Section 3.1; that is, to
maximize

>  e ��� �$# e �"!�" .
To do this, we adopt a greedy strategy. Define

∆

? � C�� P"&�P"� E F ? � C�� P"& : 1 P9� E � ? � C�� P"&%P�� E (3)

to be the marginal utility of assigning an additional weapon
to target f , given that

#
weapons have already been assigned

to it. We assign weapons one by one to the target that has
the highest value ∆  e ��� �=# �"!�" given its current assignment of
weapons (i.e., gradient ascent on

>  e ). This proceeds until
all

# _
weapons have been assigned or ∆  e���� �=# �"!�" % 0 for

all f . The concavity of the local value functions assures:
Proposition 1 The process described above chooses � e to
maximize

>  e �&�G�$# e �"!�" .
Despite this, as we argued above, this does not necessarily
result in an optimal policy. However, in this domain, the
empirical results are impressive, as we discuss in Section 5.

4.4 Plane (Instantaneous) Constraints Only
Even with an unlimited number of weapons (or as many as
required to reach zero marginal utility), we generally have
to deal with constraints on the number of simultaneously
deliverable weapons (i.e., number of planes available). The
strategy we adopt is similar to the one above, except we
greedily allocate planes instead of weapons. The one subtlety
lies in the fact that it may not be optimal to load a plane to
capacity (recall, that all weapons on a plane are delivered).

We proceed at time
!

by allocating planes one by one to
active targets. We assume (optimistically) that all targets in
the future can be allocated their optimal number of weapons
(this is optimistic because of future plane constraints, not
because of weapon availability); in other words, for com-
putational reasons, we deal with plane constraints only at
the current stage. Assume we have assigned V e planes and� e % V e  �#� weapons to target f so far. For each active targetf , we compute

� Be
, the number of bombs that the new plane

would carry: 4 6� F min 
���
 PRQ
M�
C�� E�� ��
 ��� �	�

where 6<;e ����" is given by (2). This can be used to compute
the marginal expected utility of assigning a new plane to any
active target:

∆
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As in the case of global constraints only, we assign planes
to active targets greedily until

> V e 7 ]+j or ∆  e % 0 for allf . Note that marginal utility is associated with increasing the
number of planes, not weapons as in the previous section.

4.5 Weapon and Plane Constraints
Our approach in this case will necessarily be more compli-
cated. We begin by assigning weapons to targets using the
greedy strategy outlined in Section 4.3; no plane constraints
are accounted for. The result is an assignment of resources# e

to each target. An action
� 7 �,� 1

�8 ! 8 ���� d �
is determined

for the current stage, and we assign V e planes to each target
at the current stage that will suffice to carry the

� e
weapons.

This action may be infeasible however if
> V e � ] j

(more
planes are required to carry out action

�
than are available).

We thus begin a greedy deallocation-reallocation process.
Deallocation requires that we remove certain weapons

from the current assignment
�

. We do this by greedily remov-
ing the assigned planes one by one until

> V e 7 ] j
(note

that f need only range over active targets). Intuitively, we
proceed as follows: first we compute the number of weapons� Be

that would be removed from target f if we deallocated a
single plane; we compute the change in utility that would
accompany this deallocation if we were to “optimally” real-
locate these weapons to a new target (or possibly the same
target, but forced to be used at a later stage); and then we
deallocate the plane and perform the reallocation that results
in the smallest decrease in utility. However, we will see that
this requires some care.

At any point in time, we have a list of (active) targets
which have had planes deallocated. For any such target f ,
we may consider assigning new weapons to it that have been
deallocated from some target � . But since we do not want to
consider providing a new plane for f at the current stage (one
has just been taken away), we compute ∆  e , the marginal
utility of adding a weapon to f , as follows:

∆

? � F � ' /� � ? � C & � � 4 � : 1 P�� : 1 E�� ? � C & � � 4 � P"� : 1 E � (4)

That is, we consider that this weapon must be used at some
time after the current stage. For any target that has not had
a plane deallocated, ∆  e is computed as in (3). We let ∆

d  e
denote the change in utility if we assign V new weapons
(instead of 1).

Let
� Be 7 � e D �.#�e D

1
" �#� be the number of weapons

that will be removed from (active) target f if one of its V e
planes is deallocated to satisfy the instantaneous constraint.
Then compute �  e , the value of reallocating the

� Be
weapons

optimally: we do this by adding f to the deallocated list
(temporarily) and simulating the greedy algorithm described
in Section 4.3.8 The only difference is that we use (4) as the
measure of marginal utility for any target on the deallocated
list. Notice that weapons taken from f can be reallocated to f ,
but the value of this reallocation is derived from using these
at later stages. If

���
weapons are assigned to target � , where> � � 7 �<Be , then �  e 7 >

∆ ���  � .

8By simulating, we mean that we compute the reallocation that
would take place if we actually reallocated the weapons from � ; this
won’t necessarily take place if we decide to deallocate a plane from
some other target.

The quantities �  e will be used to determine which target
will have a plane deallocated. For any active target f , define

	  e 7 ��
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� 
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1
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This is the (negative) change in expected value by deallocat-
ing

� Be
weapons (i.e., one plane) from target f .9 We deallocate

by choosing the target f with the largest
	  e . Once selected,

a plane is deallocated from f , and the
� Be

weapons are reallo-
cated greedily. In fact, the

���
values used in the computation

of �  e can be stored and used for this purpose (the simulated
reallocation can now be imposed).

We note that if any weapons are reallocated to an active
target � , it may cause � to require an additional plane (in
fact, this can occur for several active targets). To deal with
this we simply allocate new planes. While the deallocation
of one plane may cause the allocation of more planes, this
process will eventually terminate, since no deallocated target
can ever be reallocated weapons for current use.10

5 Empirical Results
To validate our heuristics, we tried them on several randomly-
generated instances of the air campaign problem, and com-
pared them to:b the optimal policy calculated by flat DPb the greedy policy that applies the action with highest ex-

pected immediate rewardb a “semi-greedy” policy that applies the action 6G;e ����" given
by (2) to each active target f , without regard to potential
interactions

The calculation of the optimal policy by DP is infeasible
for problems of moderate size. For instance, the solution
time for a problem with 5 targets and 50 weapons is on the
order of 10 minutes; for 6 targets and 60 weapons, up to 6
hours; and beyond that was not practically computable. In
contrast, the execution time for MTD is shown in Figure 2.
Without instantaneous constraints, MTD can solve a problem
with thousands of targets and tens of thousands of weapons
in under 15 minutes. A problem of 1000 targets, 10,000
weapons and 100 planes (imposing such constraints) can be
solved in about 35 minutes.

We compare the quality of solutionsproduced by MTD with
the optimal solutions produced by DP in Figure 3, though we
are restricted to very small problems (5 tasks, with no in-
stantaneous constraints; and 7 task, with instantaneous con-
straints) because of the computational demands of DP. We
also compared the greedy and semi-greedy strategies.11 The
performance of MTD is encouraging, closely tracking opti-
mal, though the performance of the greedy and semi-greedy

9Note that �
? �

is not equal to

? � C�� P"& � � 4 6� P"� E � ? � C�� P"& � P"� E .
10We are currently exploring more sophisticated strategies that

prevent this from happening.
11For all but DP, whose solution has a known value, the results

show average reward obtained over 1000 simulations of the process,
as a function of �
� (initial global resources).
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Figure 3: Comparison of the quality of policies generated by MTD, optimal DP, greedy and semi-greedy strategies on small
test problems. The graph on left shows results for a 5-task problem with no local constraints. The graph on the right describes
a 7-task problem with local constraints. Values are averaged over 1000 runs.

policies suggests these problems are not difficult enough to
differentiate these from MTD.

On much larger problems, MTD compares much more fa-
vorably to both greedy methods, with Figure 4 showing their
performance on 100 target (with instantaneous constraints)
and 300 target (no constraints) problems. The policy pro-
duced by MTD performs substantially better than the greedy
and semi-greedy policy. Such problems are well beyond the
reach of classic DP.

6 Conclusions
We have presented the method of Markov task decomposi-
tion for solving large weakly coupled MDPs, in particular,
stochastic resource allocation problems. We described sev-
eral instantiations of this technique for dealing with differ-
ent forms of resource or action constraints. The empirical

results for the air campaign problem are extremely encour-
aging, demonstrating the ability for MTD techniques to solve
problems with thousands of tasks.

Three key insights allowed us to approximately solve large
MDPs in this fashion. The first is the ability to decompose
the process into pseudo-independent subprocesses, and con-
struct optimal policies and value functions for these subMDPs
feasibly. Often special features of the domain (in this case,
the noisy-or dynamics and limited windows) can be exploited
to solve these subMDPs effectively. The second is that these
value functions can offer guidance in the construction of
policies that account for the interactions between processes.
Again, special domain features (here, the convexity of the
value functions) can offer guidance regarding the appropri-
ate heuristic techniques. The third is the use of on-line policy
construction to alleviate the need to reason about many fu-
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ture contingencies. While on-line methods are popular [1],
crucial to the success of the on-line component of MTD is the
ability to quickly construct good actions heuristically using
the component value functions.

MTD is a family of algorithms that exploit specific structure
in the problem domain to make decisions effectively. It re-
quires that the problem be specified in a specific form, taking
advantage of utility independence and probabilistic indepen-
dence in action effects. Much recent research has focussed
on using representations for MDPs that make some of this
structure explicit and automatically discovering appropriate
problem abstractions and decompositions [9, 6, 14, 11, 5].
The extent to which effective Markov task decompositions
can be automatically extracted from suitable problem repre-
sentations remains an interesting open question.
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